US009229734B2

a2z United States Patent (10) Patent No.: US 9,229,734 B2
Hulse et al. 45) Date of Patent: Jan. 5, 2016
(54) HOSPITALITY MEDIA SYSTEM 2,32‘7‘,3% : ;; }gg; an‘t?yh -
/37 aybishenko
EMPLOYING VIRTUAL USER INTERFACES 5812665 A 9/1998 Hoarty e al.
(75) Inventors: David Hulse, Athens (GR); Jason (Continued)
Thomas, Salt Lake City, UT (US)
FOREIGN PATENT DOCUMENTS
(73) Assignee: Guest Tek Interactive Entertainment CN 1687893 A 10/2005
Ltd., Calgary (CA) CN 1913943 A 2/2007
(*) Notice: Subject to any disclaimer, the term of this (Continued)
patent is extended or adjusted under 35 OTHER PUBLICATIONS
U.S.C. 154(b) by 826 days.
Tristan Richardson “The RFB Protocol”, Version 3.8, Mar. 20,
(21) Appl. No.: 12/688,343 2009.
(Continued)
(22) Filed: Jan. 15, 2010
. L Primary Examiner — Vivek Srivastava
(65) Prior Publication Data Assistant Examiner — Hermon Asres
US 2011/0179106 Al Jul. 21, 2011 (74) Attorney, Agent, or Firm — ATMAC Patent Services
Ltd.; Andrew T. MacMillan
(51) Imt.ClL
GO6F 15/16 (2006.01) 67 ABSTRACT
GOGF 9/44 (2006.01) A server is deployed on a network and manages operation of
(52) US.CL a plurality of server instances each with a virtual frame buffer.
CPC i GO6F 9/4443 (2013.01) A client establishes a connection with the server at a start of
(58) Field of Classification Search a session. The server allocates a server instance to the client
CPC e GO6F 9/4443 and a user interface app]ication renders a Corresponding
USPC s 709/203, 227, 725/37,. 151; 718/1 graphical user interface to the virtual frame buffer of the
See application file for complete search history. allocated server instance. The server forwards updates of the
. graphical user interface from the virtual frame buffer to the
(56) References Cited client, where at least some of the updates include transpar-
ency information for blending the graphical user interface
U.S. PATENT DOCUMENTS with additional visual information at the client. When the
4641253 A 2/1987 Mastran session is complete the server reclaims the server instance
5,319,455 A 6/1994 Hoarty allocated to the client. In-room device requirements in guest
2,3 }13’%8 ﬁ 55;; }ggg IS{Oélﬁty | rooms of a hospitality establishment are thereby minimized
A, nell et al. . g K i
5485197 A 1/1996 Hoarty Whlle Provflng enlll.anc.ed user 11nt§rface? performznce. Locad
5.526.034 A 6/1996 Hoarty et al. thIl.S 1 other applications include private residences an
5,550,578 A $/1996 Hoarty et al. businesses.
5,557,316 A 9/1996 Hoarty et al.
5,587,734 A 12/1996 Lauder et al. 26 Claims, 3 Drawing Sheets

202 Servey sido

Remote Ul

Client side
[;210

Remote
[8]]

Daemon

—2n — 206

- T
i T

ul | X Windows | Frame |
Server 1 | buffer

- 209

| Server
!
|

Client

i spawn

212 —, i 214 —,
2

VNC
Client

Rendering
Hardware
4

-

216 —,

; F 4
Middleware ;

VNG |

Server !

| X Windows | Frame
i Servern-1 | buffer

VNG |
Server

| X Windows
i Servern

Frame
buffer

Network -

Proxy | Server

US 9,229,734 B2
Page 2

(56)

5,883,661
5,926,647
6,034,678
6,049,823
6,055,315
6,064,377
6,100,883
6,198,822
6,202,211
6,205,582
6,253,238
6,263,346
6,301,616
6,305,020
6,463,459
6,571,245
6,600,496
6,907,574
6,941,382
7,103,099
7,254,786
7,589,737
7,600,239
7,747,086
8,209,717
8,732,749
2002/0109712
2003/0025722
2003/0234819
2004/0024580
2004/0090597
2005/0256923
2006/0117371
2006/0184614
2006/0195884
2006/0206820
2006/0230105
2006/0230156
2007/0073730
2007/0266123
2008/0007559
2008/0034029
2008/0170619
2008/0170622
2008/0178249
2008/0186979
2008/0201736
2008/0212942
2008/0215671
2008/0228865
2008/0313305
2009/0006537
2009/0041118
2009/0080523
2009/0100125
2009/0100483
2009/0119365
2009/0172751
2009/0196346
2009/0210817
2009/0313674
2009/0316709
2009/0328109
2010/0031347
2010/0064335
2010/0106766
2010/0111410
2010/0118972
2010/0138476
2010/0158109
2011/0126227
2011/0157196
2011/0179106

References Cited

U.S. PATENT DOCUMENTS

A 3/1999
A * 7/1999
A 3/2000
A 4/2000
A 4/2000
A 5/2000
A 8/2000
Bl 3/2001
Bl 3/2001
Bl 3/2001
Bl 6/2001
Bl 7/2001
Bl 10/2001
Bl 10/2001
Bl 10/2002
B2 5/2003
B1* 7/2003
B2 6/2005
Bl 9/2005
Bl 9/2006
B2 8/2007
B2 9/2009
B2 10/2009
Bl* 6/2010
B2 6/2012
B2 5/2014
Al 8/2002
Al 2/2003
Al 12/2003
Al 2/2004
Al* 52004
Al 11/2005
Al 6/2006
Al 8/2006
Al 8/2006
Al 9/2006
Al 10/2006
Al 10/2006
Al 3/2007
Al 11/2007
Al* 1/2008
Al 2/2008
Al 7/2008
Al 7/2008
Al 7/2008
Al 8/2008
Al 8/2008
Al 9/2008
Al 9/2008
Al 9/2008
Al 12/2008
Al 1/2009
Al 2/2009
Al 3/2009
Al 4/2009
Al 4/2009
Al 5/2009
Al 7/2009
Al 8/2009
Al 8/2009
Al 12/2009
Al 12/2009
Al 12/2009
Al 2/2010
Al 3/2010
Al 4/2010
Al* 5/2010
Al 5/2010
Al* 6/2010
Al 6/2010
Al 5/2011
Al 6/2011
Al 7/2011

*

Hoarty

Adams et al. ..o 712/36
Hoarty et al.

Hwang

Doyle et al.

Hoarty et al.

Hoarty

Doyle et al.

Williams, Jr.

Hoarty

Lauder et al.

Rodrigucz

Pal et al.

Hoarty et al.

Orr et al.

Huang et al.

Wagneretal. 715/716
Xu et al.

Tuli

Paz et al.

Henriquez

Hochmuth et al.

De Lange et al.

Hobbsetal. 382/232
Pina

Hulse et al.

Yacovone et al.

Cliff et al.

Daly et al.

Salmonsen et al.

De Haan
Adachi
Margulis
Baratto et al.
van Zoest et al.
Bullard et al.
Shappier et al.
Shappir et al.
Jun
Johannesson
Kalaiah et al.
Fang et al.
Landau
Gordon et al.
Gordon et al.
Kolar

Gordon et al.
Gordon et al.
Luetal.
Cruzada
Long

Palekar et al.
Pavlovskaia et al.
McDowell
McDowell
McDowell
Tomic

Aldrey et al.
Zhang et al.
Schmeider et al.
Ludvig et al.
Polcha
Pavlovskaia et al.
Ohto
Jenkin et al.

Bailey et al.

Tuetal. .ooovvvviinnn, 382/166
Zhang et al.

Gokarajuetal. 709/203
Dahlby et al.

Corvin

Nave et al.

Hulse et al.

352/43

................ 345/501

726/19

2012/0030706 Al
2014/0059597 Al
2014/0250460 Al

2/2012 Hulse et al.
2/2014 Issa et al.
9/2014 Hulse et al.

FOREIGN PATENT DOCUMENTS

CN 101022398 A 8/2007
CN 101083714 A 12/2007
CN 101568914 A 10/2009
EP 1135722 A4 6/2005
WO 9917549 Al 4/1999
WO WO 99/17549 4/1999
WO 00/07091 Al 2/2000
WO 2008088741 A2 7/2008
WO 2008088772 A9 12/2008
WO 2009099895 Al 8/2009
WO 2009155214 A2 12/2009
WO 2010041267 4/2010
WO 2010044926 A2 4/2010
WO 2010054136 A2 5/2010
OTHER PUBLICATIONS

Australian Office Action dated Feb. 15, 2012, AU Application No.
2011200152.

European Search Report dated Apr. 21, 2011, EP Application No.
11150981.6.

T. Richardson, “The RFB Protocol”, Version 3.3, pp. 1-26, retrieved
from the Internet: URL:http://grox.net/doc/apps/vnc/rfbproto.pdf
(retrieved on Jan. 11, 2010).

F. Lamberti, et al., “A Streaming-Based Solution for Remote Visual-
ization of 3D Graphics on Mobile Devices”, IEEE Transactions on
Visualization and Computer Graphics, vol. 13, No. 2, Mar./Apr.
2007.

T. Richardson, et al. “Virtual Network Computing”, IEEE Internet
Computing, IEEE Service Center, New York, New York, vol. 2, No. 1,
Jan. 1, 1998.

International Search Report and Written Opinion of the International
Searching Authority dated Apr. 30, 2010 (PCT/US2009/045996).
PN. Tudor, et al., “Read-Time Transcoding of MPEG-2 Video Bit
Streams”, BBC R&D IBC (1997) Amsterdam.

R. Kurceren, et al., “Compressed Domain Video Editing,”, ICASSP,
IEEE, 2006.

International Search Report and Written Opinion of the International
Searching Authority dated Feb. 21, 2012, International application
No. PCT/US2011/044688.

Extended European search report including search opinion for cor-
responding app. 11812960.0 at EPO; Jan. 22, 2014.

Australian Notice of Acceptance, Jun. 18, 2014, App No.
2009344302.

English translation of First Office Action and Search Report by State
Intellectual Property Office, P.R. China, for app. No. 200980159934.
7, Aug. 30, 2013.

Australian Office Action dated Feb. 21, 2014, AU Application No.
2011283037.

English translation of 1st Chinese Office Action mailed by SIPO on
Nov. 3, 2014 for Chinese counterpart application No.201110041831.
X.

Office Action by SIPO dated Jul. 24, 2014 for Chinese Patent Appli-
cation No. 200980159934.7 (Concise explanation of relevance
attached).

Office action dated Apr. 7, 2015 for European counterpart application
No. 11150981.6 (3 pages).

T Richardson, Realvne Ltd, J Levine, Taughannock Networks T:
“The Remote Framebuffer Protocol; draft-levine-rfb-00.txt”,
Internet Engineering Task Force, IETF, Nov. 18, 2008 (34 pages).
Office action dated Jun. 22, 2015 for European counterpart applica-
tion No. 11812960.0 (7 pages).

Office action dated Jul. 15, 2015 issued by SIPO in counterpart
Chinese patent app. No. 201110041831.X (English translation
included).

Office action dated Aug. 26, 2015 issued by SIPO in counterpart
Chinese patent app. No. 201180047198.3 (English translation
included).

* cited by examiner

U.S. Patent Jan. 5,2016 Sheet 1 of 3 US 9,229,734 B2

110 —

FIG. 1

104

102

104 =

™,

106

108

104

US 9,229,734 B2

Sheet 2 of 3

Jan. 5, 2016

U.S. Patent

¢ O

Jeneg Jeyng uleneg
ONA | oaweld | SMOPUM X |

! .
/

60z — 90z — bz —

FETNETS jayng | Tfmzmmw
DNA | BWweld | SMOPUIp X |

/ 7
/

apIs Jusll)

Jonog fxoid | 6oz~ 0z iz
m | WIOMION =
| IEMSIPPIA 2JEMB|PPIN |
bl *174
| aJempieH wann P .| JoaBg Jaung L JBAIBS | uoneoiddy
| Bupspusy ONA - "L ONA | ewel4 | SMOPUIM X | " N
H i A / ‘
R 474 , —z N
| 60z~ 90T bz A .
umeds ; umeds 80c
o uowseq
N <
sjowa
S10WaY In el =]
SRR 4 \
o1 — B S —— apis JoAlRg — 202

US 9,229,734 B2

Sheet 3 of 3

Jan. 5, 2016

U.S. Patent

€ Ol

(9z¢)
Jonles DNA
pajedo||e wiepay

h

(pze)
aouejsul

[I8Us N SleuiwIs]

A
seh

N
\\\
-

L (zee) e
“““““““ ipejeuiis)

T_uopoeuuo]

-

-

Py

(0zg)
UoRIBUUOD JNA BIA

ndul jusip aAedey

h

(81¢)

Y

(o1¢)
LUOR32auUuUo2

ONA usligeisq

A

(FL€)
Jsyng swel} |eniia

Q] N J=opusy

A

(voe)
pealiy} punoibyoeg

Jes

FARS)
aoueIsul ||1sys

In 81ea1)

h

A

(zog)
1senbal uoiosuULOd

BAID08Y

(oLe)
Bl |N slowey
0} OJU] UOISSSS SSed

A

A

{10¢)
S}B)s s
1N sjouiey

A

LONOBULOD DNA
BIA S8jepdn |N puas

(gog)
aouelsul JaAIeg

ONA 83ed0|ly

US 9,229,734 B2

1
HOSPITALITY MEDIA SYSTEM
EMPLOYING VIRTUAL USER INTERFACES

BACKGROUND OF THE INVENTION

The present invention relates to providing a virtual user
interface for a set top box or similar client device. More
generally, the present invention enables user interface virtu-
alization for any of a wide variety of applications and com-
puting environments.

A conventional approach for facilitating user interaction
with information or entertainment systems that employ set
top boxes involves providing a user interface application that
runs natively on the set top box. Such an application might be,
for example, a Flash player that presents a menu hierarchy.
Unfortunately, because of the typical capabilities of a set top
box, the animation associated with such interfaces often is not
rendered in a satisfactory manner, i.e., it may take on the order
of seconds for the player to render any new information it
receives (e.g., rendering a new sub-menu screen from a pre-
vious menu screen). Given what users have become accus-
tomed to when interacting with user interfaces on desktop
computer systems, this level of operation and user experience
is unacceptable.

Because of the performance limitations and deployment
costs associated with conventional set top boxes, it is desir-
able to provide solutions in which the software components
that deliver media are as device independent as possible.

SUMMARY OF THE INVENTION

According to the present invention, various methods, appa-
ratus, and computer program products are provided for
enabling user interface virtualization. According to a specific
embodiment, a system is provided for providing virtual user
interfaces over a network. The system includes one or more
servers deployed on the network and configured to manage
operation of a plurality of virtual frame buffers and a plurality
of user interface applications. The one or more servers are
further configured to associate each of the user interface
applications with a corresponding one of the virtual frame
buffers. Each user interface application is configured to ren-
der a corresponding graphical user interface to the corre-
sponding virtual frame buffer. The one or more servers are
further configured to establish a first dedicated, persistent,
bi-directional connection with each of a plurality of clients
via the network to conduct a virtual user interface session, to
allocate one of the virtual frame buffers to each of the clients,
and forward updates of the graphical user interface from each
virtual frame buffer to the corresponding client via the first
connection. Atleast some of the updates include transparency
information for use in blending the graphical user interface
with additional visual information at the corresponding cli-
ent. The one or more servers are further configured to receive
user input from each client via the first connection and pro-
vide the user input to the corresponding user interface appli-
cation. The user input represents interaction of a user associ-
ated with each client with a representation of the
corresponding graphical user interface. The system also
includes the plurality of clients with associated displays. Each
client is configured to receive the graphical user interface
updates from the corresponding virtual frame buffer via the
first connection, and to render the representation of the cor-
responding graphical user interface with the additional visual
information on the associated display using the updates and

10

15

20

25

30

35

40

45

50

55

60

65

2

the transparency information. Each client is further config-
ured to transmit the user input to the one or more servers via
the first connection.

According to other specific embodiments, methods, appa-
ratus, and computer program products are provided for pro-
viding a virtual user interface over a network. According to
these embodiments, operation of a plurality of virtual frame
buffers is managed on one or more servers deployed on the
network. In response to a connection request from a remote
client, a user interface application operating on a first one of
the one or more servers is associated with an allocated one of
the virtual frame buffers. The user interface application is
configured to render a graphical user interface to the allocated
virtual frame buffer. A first dedicated, persistent, bi-direc-
tional connection is established between the first server and
the remote client via the network to conduct a virtual user
interface session. Updates of the graphical user interface are
forwarded from the allocated virtual frame buffer to the
remote client via the first connection. At least some of the
updates include transparency information for use in blending
the graphical user interface with additional visual informa-
tion at the remote client. User input is received from the
remote client via the first connection and provided to the user
interface application. The user input represents interaction of
auser associated with the remote client with a representation
of the graphical user interface.

According to still other specific embodiments, methods,
apparatus, and computer program products are provided for
interacting with a virtual user interface over a network. A
connection request is transmitted to a server via the network.
The server is configured to manage operation of a plurality of
virtual frame buffers and, in response to the connection
request, associate a user interface application operating on the
server with an allocated one of the virtual frame buffers. The
user interface application is configured to render a graphical
user interface to the allocated virtual frame buffer. A first
dedicated, persistent, bi-directional connection to the server
is established via the network to conduct a virtual user inter-
face session. Updates of the graphical user interface are
received from the allocated virtual frame buffer via the first
connection. Atleast some of the updates include transparency
information for use in blending the graphical user interface
with additional visual information. A representation of the
graphical user interface is rendered in conjunction with the
additional visual information on a display using the updates
and the transparency information. User input is forwarded to
the server via the first connection for presentation to the user
interface application. The user input represents interaction of
a user with the representation of the graphical user interface.

A further understanding of the nature and advantages of the
present invention may be realized by reference to the remain-
ing portions of the specification and the drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a simplified diagram illustrating an example of a
system in which embodiments of the present invention may
be implemented.

FIG. 2 is a block diagram illustrating various system com-
ponents for a specific embodiment of the invention.

FIG. 3 is a flowchart illustrating operation of a specific
embodiment of the invention.

DETAILED DESCRIPTION OF SPECIFIC
EMBODIMENTS

Reference will now be made in detail to specific embodi-
ments of the invention including the best modes contemplated

US 9,229,734 B2

3

by the inventors for carrying out the invention. Examples of
these specific embodiments are illustrated in the accompany-
ing drawings. While the invention is described in conjunction
with these specific embodiments, it will be understood that it
is not intended to limit the invention to the described embodi-
ments. On the contrary, it is intended to cover alternatives,
modifications, and equivalents as may be included within the
spirit and scope of the invention as defined by the appended
claims. In the following description, specific details are set
forth in order to provide a thorough understanding of the
present invention. The present invention may be practiced
without some or all of these specific details. In addition, well
known features may not have been described in detail to avoid
unnecessarily obscuring the invention.

According to various embodiments of the invention, virtual
user interfaces running on one or more servers are presented
on remote client devices. Such embodiments may be charac-
terized as a service which pools, manages, and cleans up,
virtual user interface sessions. Embodiments of the invention
are described with reference to user interfaces associated with
set top boxes that control operation of associated televisions
(e.g., menu hierarchies). However, it should be noted that
references to such embodiments are not intended to be limit-
ing. Rather, embodiments of the invention are contemplated
in which interfaces associated with any of a wide variety of
applications may be presented in a manner which requires
very little in the way of resources at the client, and which may
be configured to be largely independent of client device hard-
ware.

FIG. 1 shows a simplified diagram of a network environ-
ment in which embodiments of the present invention may be
implemented. Network 102 may represent any combination
of private and/or public local or wide area network(s) imple-
mented with any of a wide variety of network technologies
and communication protocols. For example, network 102
may represent one or more IP networks, cable networks,
telecommunications networks, satellite television networks,
wired or wireless networks, or any combination thereof. The
hardware in various user locations 104 are connected via
network 102 to servers 106, 108, and 110 (and associated data
stores) which may be operated and/or controlled by one or
more service providers. It will be understood that each rep-
resentation of a server may represent multiple servers over
which the various processes and computing loads associated
with embodiments of the invention may be distributed. In this
depiction, servers 106, 108, and 110 may represent various
aspects of particular implementations such as, for example,
virtual user interface servers, media servers, etc.

User location hardware may include a client device, e.g., a
set top box 112, and an associated display, e.g., a television
114. Alternatively, display devices 116 may include sufficient
integrated computing resources to interact with the remote
servers in accordance with the invention, e.g., some new
generation digital televisions. According to some embodi-
ments, the user locations might be, for example, guest rooms
in a hospitality context, with the intervening network being
part of the hotel’s private network infrastructure. Alterna-
tively, the user locations might be private residences and/or
businesses that subscribe to digital television and/or informa-
tion services provided, for example, by cable or satellite
system operators. According to another alternative, the user
locations might be private residences and/or businesses con-
nected to a public network such as the Internet. Those of skill
in the art will appreciate the full range of possible embodi-
ments with reference to these examples.

According to a particular class of embodiments, the user
interface for a set top box is run on a virtual user interface (UI)

20

25

40

45

65

4

server that is remote from the set top boxes in the system. As
mentioned above, the virtual Ul server may actually be mul-
tiple servers. Incremental graphical updates for the user inter-
face are forwarded to the set top box via a dedicated commu-
nication channel using any of a variety of protocols such as,
for example, virtual network computing protocol (VNC),
remote desktop protocol (RDP), or Apple remote desktop
protocol (ARD). More generally, embodiments of the present
invention in this class of embodiments may be implemented
using any known or proprietary protocol by which incremen-
tal graphical updates of an interface may be transmitted to a
client, and in which user input received from the client drives
the graphical updates.

As will be understood, a conventional VNC system typi-
cally includes a client, a server, and a relatively simple com-
munication protocol referred to as RFB (i.e., remote frame
buffer). A frame buffer is a memory buffer that contains color
values for every pixel making up a display image at a given
moment in time. As the frame buffer is modified by applica-
tion software, the VNC server sends small rectangles of the
frame buffer, corresponding to the regions that have changed
since the last update, to the VNC client for rendering on an
associated display. The client sends user input to the VNC
server to drive these updates.

According to some embodiments relating to set top boxes,
the set top box handles both playback of video streams and
presentation of the user interface. As will be discussed, the
user interface runs and is rendered to a frame buffer on a
remote platform which transmits graphical updates of the
interface to the set top box. According to various embodi-
ments of the invention, when the updates are received by the
set top box they are “blended” with the video being played by
the settop box. According to some of these embodiments, this
blending operation is facilitated by identifying whether por-
tions of the information in the user interface updates are
opaque, transparent, or semi-transparent, so that the corre-
sponding pixels of the display may be rendered as graphics,
video, or a combination of both.

An example of a particular architecture for providing vir-
tual user interfaces in accordance with embodiments of the
invention will now be described with reference to FIG. 2.
According to some embodiments, the depicted components
may be deployed in computing environments similar to the
one depicted in FIG. 1. However, the various software com-
ponents are shown without specific reference to the hardware
or computing platforms on which the software components
are operating because those of skill in the art will understand
that such software components may be deployed in a wide
variety of ways without departing from the scope of the
invention. For example, system components on the server
side may reside on the same or different computing platforms.
Therefore, at least some of the specific references to the
location or context of specific components should not be
considered to limit the invention.

Referring now to FIG. 2 and the flowchart of FIG. 3, when
a client device powers up, a Remote UI Client 210 is started
(301) and attempts to establish a connection, e.g., makes a
TCP connection request, with a Remote User Interface Dae-
mon 202 on a virtual Ul server. Remote User Interface Dae-
mon 202 listens for such connection requests from clients
(302), and starts a background thread for each (304). The
background threads initiated by Daemon 202 persist while
their corresponding virtual user interface sessions (discussed
below) persist.

Daemon 202 (which may be one of multiple such daemons
operating in conjunction with each other) is responsible for
managing a set of concurrent user interface sessions in the

US 9,229,734 B2

5

system. Daemon 202 maintains a list of available VNC server
instances 209 running on the server, with associated virtual
frame buffers 206. When it receives a connection request,
Daemon 202 allocates one of the available VNC server
instances to the connection (308) (removing it from the list),
and passes session information back to the client by which the
session may be identified (310). According to a specific
embodiment, the session information includes an IP address
and port number with which the client can connect to the
allocated VNC server instance.

Daemon 202 also creates an instance of a user interface
shell 208 (312) which runs on the virtual Ul server. The user
interface shell is created and rendered to the frame buffer
associated with the allocated VNC server instance. According
to a specific embodiment, the shell is an Adobe Flash player
that generates the user interface. In contrast with a player that
runs natively on a conventional set top box, shell 208 renders
the user interface to the frame buffer associated with the
allocated VNC server instance (314) rather than a frame
buffer in the set top box. Because of the greater computing
resources available on the server, the user interface frames
may be rendered at a much higher frame rate than on a
conventional set top box (nearly 100 times faster in a particu-
lar implementation).

In the depicted VNC-based implementation, each VNC
server instance 209 is a VNC server coupled with an X Win-
dows server 211 (e.g., Xvnc4). The X Windows server pro-
vides a rendering API for X Windows client applications,
such as the user interface applications (208), rendering each
such application into a frame buffer shared with the coupled
VNC server. Each VNC server instance 209 operating on the
server (which may be one or more servers) continuously
monitors its associated frame buffer, and transmits graphical
updates to the VNC client to which the VNC server instance
has been allocated. According to specific embodiments, these
updates are transmitted in response to update requests from
the client, and do not necessarily correspond to the frames
that are rendered into the buffer. Rather they are more typi-
cally some aggregation of pixels (typically one or more rect-
angular portions of the interface) that have changed since the
last update was sent to the client. According to specific
embodiments, it is up to the client to request either the full
contents of the frame buffer or only an incremental update. In
the latter case, the VNC server instance remembers the state
of the virtual frame buffer when the client last requested an
update, and transmits only the information that has changed
since the last request. In addition, the VNC server may not
respond immediately to a client’s update request. That is, the
VNC server may wait briefly to aggregate updates for trans-
mission to the client to provide a more bandwidth-efficient
response.

As discussed above, when the client device powers up,
Remote Ul Client 210 is started and establishes a connection
with Daemon 202. Remote Ul Client 210 then starts an imple-
mentationofa VNC client 212 (e.g., DirectVNC) on the client
device, e.g., the set top box, which is the application that
requests the interface updates from the allocated VNC server
instance. Using the session information, VNC client 212
establishes a direct VNC connection with the VNC server
instance allocated to the client (316) over which the interface
updates are subsequently passed.

It should again be noted that, while the client device may in
some embodiments be a set top box, implementations are
contemplated in which the functionalities described herein
are integrated into the hardware that ultimately renders the
interface, e.g., a digital television with sufficient processing
and memory resources. Alternatively, at least some of the

10

20

25

30

35

40

45

50

55

60

65

6

functionalities described herein could be implemented in a
separate, stand alone device that operates with a television, a
set top box, or both.

Once the VNC connection is established, VNC client 212
requests updates from the corresponding VNC server
instance (318), which it renders on the set top box. This is
done via a connection between VNC client 212 and client
device rendering hardware 214.

According to a particular class of embodiments, extensions
to the VNC Protocol are provided for handling transparent
pixel information. As is well known, within graphical sys-
tems, a frame buffer is a commonly used area of memory used
to hold the color values of pixels that make up a display
image. The manner in which pixels are stored within a frame
buffer can take many different formats depending on the
purpose of the frame buffer. For example, a frame buffer used
for the storage of video frames might store pixels in a planar
YUV420 format, whereas a frame buffer used for driving a
display device might store pixels in a packed RGB format.
These different formats are determined by the color space of
the frame buffer and a pre-determined binary representation
of a pixel within that color space. For example, an RGB color
space could store pixels within a 16-bit word, with 5 bits
allocated to the red and blue components and 6 bits allocated
to the green component. Alternatively, 24-bits may be used
with 8 bits allocated to each of the three color components.
However, since 24-bits (3 bytes) is inconvenient to work with
in computer systems with a 32-bit native word size, it is
common to store RGB pixels in a 32-bit word, with 8 bits
allocated to each color component, leaving a further 8-bits
unused. The number of bits used to store a pixel is sometimes
referred to as the color depth of the frame buffer.

In some graphical systems, particularly those in which it is
contemplated that display images will be composited with
other image sources (e.g., video frames), the frame buffer
may also store transparency information along with each
pixel. This transparency information is sometimes referred to
as the “alpha channel” or “alpha component.” The alpha
component of a pixel determines the pixel’s degree of trans-
parency, ranging from completely opaque to completely
invisible. Using standard image compositing rules well
known to those of skill in the art, a frame buffer containing
pixel data along with alpha information can be used to com-
posite multiple images. A possible application of this would
beto “blend” frames of video with a graphical layer such that
a graphical user interface (rendered into the graphical layer)
could be overlaid on the video in a translucent manner.

In an RGB frame buffer, where pixel information is stored
using 24-bits within a 32-bit word, the unused 8-bits are
commonly used to store the alpha channel information for
each pixel. Such a pixel format is sometimes referred to as
ARGB:8888, although other pixel formats including an alpha
channel are also possible.

According to various embodiments of the present inven-
tion, the X Windows server is configured to render to a frame
buffer storing pixels in the RGB format, using 24-bits to hold
the RGB information within a 32-bit word. Standard X Win-
dows client applications will render via the X Windows API
into this RGB frame buffer. However, specialized applica-
tions, such as those that require rendering of transparency
information, are able to access the X Windows frame buffer
directly (using the standard XSHM extension to X Windows).
These applications can use the unused 8-bits within each
32-bit pixel to store the alpha component for each pixel.
Unfortunately, standard X Windows clients that do not take
this approach will not necessarily correctly set the alpha
component in each pixel (since X Windows does not support

US 9,229,734 B2

7

this directly) and so will “inherit” any pre-existing alpha
component for each pixel. For this reason, it is necessary to
modify the standard X Windows server so that standard client
applications will render an alpha component for each pixel
resulting in fully opaque pixels. This change ensures that
standard X Windows client applications will render in an
opaque manner, whereas more specialized client applications
can render in a translucent manner by directly setting the
alpha component for each pixel.

Thus, embodiments of the present invention employ an X
Windows server, modified as described above, coupled with a
VNC server. The VNC server monitors the frame buffer
shared with the X Windows server and provides graphical
updates to VNC clients elsewhere in the network using the
VNC protocol. An inherent part of the VNC protocol is the
negotiation between client and server of the pixel format that
graphical updates are to use. The VNC protocol defines sev-
eral different pixel formats, none of which include an alpha
component, i.e., the standard VNC protocol does not support
transparency information. Therefore, these embodiments of
the invention extend the VNC protocol to support additional
pixel formats.

Extensions to the VNC protocol may be implemented by
creating so-called pseudo encoding formats. A client will then
signal that it supports a given extension by requesting a
pseudo encoding corresponding to that extension. A server
not supporting that extension will simply ignore the request,
whereas a suitably enhanced server will respond by sending
the client a proprietary acknowledgement message associated
with the extension.

According to these embodiments of the present invention,
the VNC protocol has been extended by adding a pseudo
encoding message known as “Preserve Alpha Channel.”
When a client requests a server to abide by this pseudo encod-
ing, the server responds by sending the client a proprietary
acknowledgement message. The client then requests an RGB
pixel format using 24-bits to store the RGB data within a
32-bit word, and the server ensures that all graphical updates
preserve the alpha component data using the remaining 8 bits
within the 32-bit word to transfer the alpha component of
each pixel. In particular, the “ZRLE” method of sending
graphical updates will not compress 32-bit pixels into 24-bits
which would result in the loss of the alpha component data.

Referring back to FIG. 3, and according to some embodi-
ments, VNC client 212 also forwards various types of input
received from the set top box (e.g., user interaction with the
virtual interface via a remote control, pointer, or mouse, or
keyboard) to the VNC server instance (320) which passes
them on to user interface shell 208 via the X Windows server
API. Upon receipt of these user input events, the user inter-
face application 208 reacts to the events, which may result in
graphical updates being made to the user interface and there-
fore rendered into the frame buffer associated with the allo-
cated X Windows server.

While the client device is operational, the user interface
shell and VNC server instance allocated to the set top box
persist, even while the set top box is playing other media and
the user is not viewing or interacting with the virtual user
interface. The connection, e.g., the TCP socket, that is estab-
lished to initiate the user interface session is also maintained
for the duration of the session to indicate that the resources
allocated to that client (e.g. VNC server instance) are still
being used (even though little or nothing is being transmitted
over the connection). When the session ends (e.g., the client
device is powered down), the TCP connection is terminated
(322), and the Remote Ul Daemon initiates a clean up on the

10

15

20

25

30

35

40

45

50

55

60

65

8

server side involving termination of the user interface shell
(324) and reclaiming of the VNC server instance (326).

Itis worth noting that, in embodiments implemented using
set top boxes, the actual media content selected by the user in
the user interface and played by the set top box on the asso-
ciated television is typically delivered to the set top box via
another channel (e.g., a TCP or UDP connection between a
remote media server and corresponding middleware operat-
ing on the set top box) not shown in FIG. 2.

According to a specific class of embodiments, movement
of'the user interface shell functionality from the set top box to
aback end server involves a bifurcation of the functionality in
the original shell that was native on the set top box. That is, in
previous solutions in which a native user interface operated
onthe settop box, it interfaced with the rendering hardware of
the set top box (i.e., to draw the interface into the frame
buffer), as well as resident middleware (e.g., 215) to control
media playback. According to a particular implementation of
the present invention and as illustrated in FIG. 2, the user
interface is moved to the back end, the interface to the ren-
dering hardware is effectively replaced with the VNC client,
and the interface to the middleware is replaced by a thin
intervening “proxy” operating on the set top box that handles
the communication with middleware 215. This “Middleware
Remote Abstraction Layer” (e.g., Middleware Network
Proxy 216) receives communications from the user interface
shell via a network connection (e.g., a TCP socket) and trans-
lates them into inter-process communications recognized by
the middleware, e.g., communications via Unix sockets that
are established and persist while the set top box is operational.
The socket between the shell and the abstraction layer may be
established, for example, using the IP address of the client
passed from Daemon 202 to shell 208.

According to a specific embodiment, the Middleware
Remote Abstraction Layer may be characterized as an event
delivery and retrieval system that is effectively an abstraction
layer to the media capabilities of the underlying platform, i.e.,
it provides the necessary translation between the underlying
hardware platform and the logic controlling it in the remote
user interface. Calls handled by the Middleware Remote
Abstraction Layer include, for example, information deter-
mining changes that need to be made to the state of the media
playback device due to user interaction, e.g., tuning to a new
television channel. For example, when a user presses “Chan-
nel Up” on his remote control, this produces a remote key
press event that is consumed by the user interface shell run-
ning on the remote server. The logic in the user interface shell
then determines what the next channel in the guide is and
presents the corresponding details to the user. Upon selection
of that channel, the user interface shell transmits a message
over the middleware call socket with instructions to begin
playback of the selected channel. The Middleware Remote
Abstraction Layer thus only needs to provide a generic inter-
face that may be presented in the same or similar manner on
any piece of hardware, thereby exposing the platform’s media
playback capabilities. Notification events from the middle-
ware to the user interface shell may include any sort of hard-
ware or playback status updates. Examples of such events
include a notification that the current clip has ended, the time
position into the current clip, error status information, or
anything at all relating to the dynamic status of the media or
hardware capabilities of the target platform.

According to a specific set of embodiments, the abstraction
mechanism provided by the Middleware Remote Abstraction
Layer employs a set of local ports, and through these ports
may provide end point services to local independent pieces of
software. According to one such embodiment, the Middle-

US 9,229,734 B2

9

ware Remote Abstraction Layer maintains two Unix domain
sockets connected to the middleware callback local socket
and the middleware event delivery socket respectively. The
Middleware Remote Abstraction Layer also maintains two
network ports so that remote services can access the system as
if they were a local process via a remote protocol. According
to some embodiments, the Middleware Remote Abstraction
Layer may also be employed to facilitate remote control of the
set top box, e.g., for testing or debugging purposes.

It should be understood that the Middleware Remote
Abstraction Layer is not a necessary component for all imple-
mentations of virtual user interfaces in accordance with the
present invention. That is, as discussed above the Middleware
Remote Abstraction Layer is provided as part of a solution in
which most of the functionality of software originally
designed to run on the set top box is moved to a back end
server. Providing this abstraction layer allows such a solution
without having to modify the existing middleware on the set
top box. However, presenting other types of virtual user inter-
faces in accordance with the various embodiments of the
present invention, depending on their functionality, may not
require such an intervening proxy, e.g., applications that do
not require control over media playback, or should not have
such control capabilities.

More generally, embodiments of the invention are contem-
plated in which the user interface shell operating on the vir-
tual Ul server may be replaced with any arbitrary application
configured to render itself into a frame buffer via an X Win-
dows server. According to a particular class of embodiments,
such applications preferably do not include much if any video
content in that the rendering of video on a remote client might
not be entirely satisfactory if delivered via a VNC connection.
That is, the frame rate required to correctly render video will
not generally match the rate of incremental updates per-
formed with a VNC-like approach, thus resulting in various
undesirable video artifacts such as “tearing” or partially ren-
dered video frames. A suitable alternative for delivering such
video content is described in U.S. patent application Ser. No.
12/473,086 for VIRTUAL DESKTOP SERVICES filed on
May 27, 2009, the entire disclosure of which is incorporated
herein by reference for all purposes.

In view of the foregoing, embodiments are contemplated in
which virtual user interfaces generated in accordance with the
present invention include audio content. According to some
such embodiments, an audio stream associated with the inter-
face is transmitted to the client in addition to the graphic
updates to the interface described above. This may be done,
for example, using a proprietary extension of the VNC pro-
tocol. Alternatively, a secondary audio channel may be pro-
vided by a separate protocol (e.g. Pulse Audio).

The ability to run arbitrary applications remotely in accor-
dance with some embodiments of the invention effectively
turns embedded client devices into open platforms that can
enjoy a much broader range of third party development of
software applications. That is, the very nature of the embed-
ded, proprietary computing environments of set top boxes
associated with cable or satellite television systems, or with
other proprietary digital television systems, presents barriers
to the development of applications for such platforms by third
party developers. By contrast, embodiments of the invention
are able to create such opportunities by enabling the remote
operation and delivery of arbitrary applications on more stan-
dard server platforms, thus enabling applications which are
traditionally only available on desktop computing systems to
be available on embedded computing platforms.

Embodiments of the invention may be employed to move a
wide range of functionality (e.g., rasterization, font render-

10

15

20

25

30

35

40

45

50

55

60

65

10

ing, graphics processing, etc.) to a back end service. The role
of the client device may therefore be significantly reduced,
e.g., forwarding user input, rendering provided visual
updates, and exposing an API to interface with its media
playback capabilities. The responsiveness, rendering capa-
bilities, and logic capabilities for any given application can
thus be made device neutral. Dependencies porting to other
platforms may also be eliminated, by removing a dependency
on a graphics rendering system, and replacing it with a thin
client with a small source base. The thin client can be config-
ured to require no support libraries, and only bare-minimum
standard features, e.g., network sockets, and a frame buffer to
update. New software features and components that are neu-
tral to the target platform may also be quickly and easily
integrated since the server architecture (e.g., an x86 platform)
will typically be running a fully featured operating system
with all of the necessary libraries to run any modern piece of
software. Thus, embodiments of the invention are contem-
plated that entirely eliminate having to port, provide libraries
for, or tune, virtually any software one might wish to provide
to an end user on virtually any client device, including pro-
prietary set top box environments and the like.

While the invention has been particularly shown and
described with reference to specific embodiments thereof; it
will be understood by those skilled in the art that changes in
the form and details of the disclosed embodiments may be
made without departing from the spirit or scope of the inven-
tion. In addition, although various advantages, aspects, and
objects of the present invention have been discussed herein
with reference to various embodiments, it will be understood
that the scope of the invention should not be limited by ref-
erence to such advantages, aspects, and objects. Rather, the
scope of the invention should be determined with reference to
the appended claims.

What is claimed is:

1. A hospitality media system providing virtual user inter-
faces over a network, the system comprising:

one or more computer servers deployed on the network and

configured to manage operation of a plurality of server
instances each with an associated virtual frame buffer,
and to manage operation of a plurality of user interface
applications; and

a client device having one or more processors coupled to a

memory storing software instructions, the client device
being coupled to both the network and a display located
in one of a plurality of guest rooms of a hospitality
establishment;

wherein, by the one or more processors of the client device

executing the software instructions stored in the
memory, the client device is configured to request a
connection with the one or more servers over the net-
work at a start of a user session;

the one or more servers are further configured to allocate

one of the server instances to the client device in
response to receiving the connection request from the
client device, and to associate one of the user interface
applications with the server instance allocated to the
client device, the user interface application configured to
render a graphical user interface to the virtual frame
buffer of the server instance allocated to the client
device;

the one or more servers are further configured to establish

a first connection with the client device via the network
to conduct a virtual user interface session, and to for-
ward to the client device via the first connection updates
of the graphical user interface from the virtual frame
buffer of the server instance allocated to the client

US 9,229,734 B2

11

device, at least some of the updates including transpar-
ency information for use in blending the graphical user
interface with video rendered by the client device;

the one or more servers are further configured to receive

user input from the client device via the first connection,
provide the user input to the user interface application,
and generate playback instructions for controlling play-
back of the video on the client device according to the
user input, the user input representing interaction by a
user of the client device with a representation of the
graphical user interface;

the one or more servers are further configured to send the

playback instructions to the client device via the network
over a second connection established with the client
device;

the client device is configured to receive the graphical user

interface updates via the first connection, receive the
playback instructions via the second connection, receive
media content for rendering the video via a channel
different than the first and second connections, play the
video on the display according to the media content,
further render on the display the representation of the
graphical user interface overlaid on the video according
to the updates and the transparency information, and
translate the playback instructions into inter-process
communications recognized by middleware running on
the client device in order to control playback of the video
shown on the display according to the playback instruc-
tions, the client device further configured to transmit the
user input to the one or more servers via the first con-
nection; and

the one or more servers are further configured to reclaim

the server instance allocated to the client device when
the user session is complete.
2. The system of claim 1 wherein the client device is
implemented in a set top box configured to provide interactive
television services on an associated display coupled to the set
top box.
3. The system of claim 2 wherein the graphical user inter-
face comprises an interactive menu for navigating the inter-
active television services.
4. The system of claim 1 wherein the client device is
integrated within the display of the client device.
5. The system of claim 1 wherein the first connection
comprises one of a virtual network computing (VNC) con-
nection, a remote desktop protocol (RDP) connection, or an
Apple remote desktop protocol (ARD) connection.
6. The system of claim 1 wherein:
the first connection comprises a virtual network computing
(VNC) connection; and

the one or more servers are configured to include the trans-
parency information in at least some of the updates in
response to a pseudo encoding message received from
the client device.

7. The system of claim 1 wherein each update comprises
only one or more portions of the graphical user interface that
has changed since a previous update.

8. A computer-implemented method for providing a virtual
user interface over a network in a hospitality media system;
the computer-implemented method comprising:

managing operation of a plurality of server instances each

with an associated virtual frame buffer on one or more
servers deployed on the network;

receiving by the one or more servers a connection request

over the network at a start of a user session, wherein the
connection request is sent from a client device coupled

10

15

20

25

30

35

40

45

50

55

60

12

to both the network and a display device located in one
of a plurality of guest rooms of a hospitality establish-
ment;
in response to receiving the connection request, allocating
one of the server instances to the client device by the one
Or more servers;

associating a user interface application operating on a first
one of the one or more servers with the server instance
allocated to the client device, wherein the user interface
application is configured to render a graphical user inter-
face to the virtual frame buffer of the server instance
allocated to the client device;

establishing a first connection between the first server and

the client device via the network to conduct a virtual user
interface session;
forwarding updates of the graphical user interface to the
client device via the first connection from the virtual
frame buffer of the server instance allocated to the client
device, at least some of the updates including transpar-
ency information for use in blending the graphical user
interface with video rendered by the client device;

receiving user input from the client device via the first
connection, wherein the user input represents interac-
tion by a user of the client device with a representation of
the graphical user interface;

providing the user input to the user interface application;

generating playback instructions for controlling playback

of the video on the client device according to the user
input;

sending the playback instructions to the client device via

the network over a second connection established with
the client device; and

reclaiming by the one or more servers the server instance

allocated to the client device when the user session is
complete;
wherein the client device receives via a channel different
than the first and second connections media content for
rendering the video, plays the video on the display
according to the media content, further renders on the
display the representation of the graphical user interface
overlaid on the video according to the updates and the
transparency information, and translates the playback
instructions into inter-process communications recog-
nized by middleware running on the client device in
order to control playback of the video shown on the
display according to the playback instructions.
9. The computer-implemented method of claim 8 wherein
the graphical user interface comprises an interactive menu for
selecting the interactive television services.
10. The computer-implemented method of claim 8 wherein
the first connection comprises one of a virtual network com-
puting (VNC) connection, a remote desktop protocol (RDP)
connection, or an Apple remote desktop protocol (ARD) con-
nection.
11. The computer-implemented method of claim 8
wherein:
the first connection comprises a virtual network computing
(VNC) connection; and

the transparency information is included in at least some of
the updates in response to a pseudo encoding message
received from the client device.

12. The computer-implemented method of claim 8
wherein:

each update comprises only one or more portions of the

graphical user interface that has changed since a previ-
ous update; and

US 9,229,734 B2

13

the method further comprises forwarding the updates
either in response to a detected change in the graphical
user interface or in response to a programmable trigger
unrelated to change detection in the graphical user inter-
face.

13. A computer-implemented method for interacting with a
virtual user interface over a network of a hospitality media
system, the computer-implemented method comprising:

starting a user session at a client device coupled to both the

network and a display located in a guest room of a
hospitality establishment;

transmitting a connection request by the client device to

one or more servers via the network; wherein the one or
more servers are configured to manage operation of a
plurality of server instances each with an associated
virtual frame buffer and, in response to the connection
request, to associate a user interface application operat-
ing on the server with an allocated one of the server
instances, the user interface application configured to
render a graphical user interface to the virtual frame
buffer of the server instance allocated to the client
device;

establishing a first connection between the client device

and the one or more servers via the network to conduct a
virtual user interface session;
receiving, by the client device, updates of the graphical
user interface from the virtual frame buffer of the server
instance allocated to the client device via the first con-
nection, at least some of the updates including transpar-
ency information for use in blending the graphical user
interface with video rendered by the client device;

forwarding user input by the client device to the one or
more servers via the first connection for presentation to
the user interface application, the user input representing
interaction by a user of the client device with a repre-
sentation of the graphical user interface rendered by the
client device on the display;

receiving, by the client device, playback instructions from

the one or more servers via the network over a second
connection established between the client device and the
one or more servers, wherein the one or more servers
generate the playback instructions for controlling play-
back of the video on the client device according to the
user input;

receiving, by the client device, media content for rendering

the video via a channel separate from the first and second
connections;

playing the video on the display by the client device

according to the media content;
further rendering, by the client device, the representation of
the graphical user interface overlaid on the video accord-
ing to the updates and the transparency information; and

translating, by the client device, the playback instructions
into inter-process communications recognized by
middleware running on the client device in order to
control playback of the video shown on the display
according to the playback instructions.

14. The computer-implemented method of claim 13
wherein the graphical user interface comprises an interactive
menu for selecting interactive television services.

15. The computer-implemented method of claim 13
wherein the first connection comprises one of a virtual net-
work computing (VNC) connection, a remote desktop proto-
col (RDP) connection, or an Apple remote desktop protocol
(ARD) connection.

5

10

15

20

25

30

35

40

45

50

55

[

0

65

14

16. A computing device configured to provide a virtual user

interface in a hospitality media system, the computing device
comprising:

amemory device storing software instructions along with a
plurality of virtual frame buffers each associated with
one of a plurality of server instances;
a network interface coupled to a network at the hospitality
establishment; and
one or more processors; wherein, by executing the soft-
ware instructions in the memory device, the one or more
processors are configured to:
receive a connection request from a client device on the
network, wherein the client device is coupled to a
display located in one of a plurality of guest rooms of
the hospitality establishment;

allocate one of the server instances to the client device in
response to receiving the connection request from the
client device;

associate a user interface application with the virtual
frame buffer, the user interface application configured
torender a graphical user interface to the virtual frame
buffer of the server instance allocated to the client
device;

establish a first connection to the remote client via the
network to conduct a virtual user interface session;

forward updates of the graphical user interface to the
client device via the first connection from the virtual
frame buffer of the server instance allocated to the
client device, at least some of the updates including
transparency information for use in blending the
graphical user interface with video rendered by the
client device;

receive user input from the client device via the first
connection and provide the user input to the user
interface application, the user input representing
interaction by a user of client device with a represen-
tation of the graphical user interface;

generate playback instructions for controlling playback
of'the video on the client device according to the user
input;

send the playback instructions to the client device via the
network over a second connection established with
the client device; and

reclaim the server instance allocated to the client device
when the user session is complete;

wherein the client device receives via a channel different
than the first and second connections media content
for rendering the video, plays the video on the display
according to the media content, further renders on the
display the representation of the graphical user inter-
face overlaid on the video according to the updates
and the transparency information, and translates the
playback instructions into inter-process communica-
tions recognized by middleware running on the client
device in order to control playback of the video shown
on the display according to the playback instructions.

17. A computing device for interacting with a virtual user

interface in a hospitality media system, the computing device
comprising:

a display port coupled to a display device located in one of
aplurality of guest rooms of a hospitality establishment;

a memory device storing software instructions;

a network interface coupled to a network at the hospitality
establishment; and

one or more processors; wherein, by executing the soft-
ware instructions in the memory device, the one or more
processors are configured to:

US 9,229,734 B2

15

transmit a connection request to one or more servers via
the network at a start of a user session, wherein the one
or more servers are configured to manage operation of
aplurality of server instances each with an associated
virtual frame buffer and, in response to the connection
request, to associate a user interface application with
an allocated one of the server instances, the user inter-
face application configured to render a graphical user
interface to the virtual frame buffer of the allocated
server instance;

establish a first connection to the server via the network
to conduct a virtual user interface session;

receive via the first connection updates of the graphical
user interface from the virtual frame buffer of the
allocated server instance, at least some of the updates
including transparency information for use in blend-
ing the graphical user interface with video rendered
by the client device;

forward user input to the one or more servers via the first
connection for presentation to the user interface appli-
cation, the user input representing interaction of auser
with a representation of the graphical user interface
rendered by the client device on the display;

receive playback instructions from the one or more serv-
ers via the network over a second connection estab-
lished between the client device and the one or more
servers, wherein the one or more servers generate the
playback instructions for controlling playback of the
video on the client device according to the user input;

receive, media content for rendering the video via a
channel separate from the first and second connec-
tions;

play the video on the display by the client device accord-
ing to the media content;

further render the representation of the graphical user
interface overlaid on the video according to using the
updates and the transparency information; and

10

16

translate the playback instructions into inter-process
communications recognized by middleware running
onthe client device in order to control playback of the
video shown on the display according to the playback
instructions.
18. The computing device of claim 16, wherein the graphi-
cal user interface comprises an interactive menu for selecting
the interactive television services.
19. The computing device of claim 16, wherein the first
connection comprises one of a virtual network computing
(VNC) connection, a remote desktop protocol (RDP) connec-
tion, or an Apple remote desktop protocol (ARD) connection.
20. The computing device of claim 16 wherein:
the first connection comprises a virtual network computing
(VNC) connection; and

the transparency information is included in at least some of
the updates in response to a pseudo encoding message
received from the client device.

21. The computing device of claim 17, wherein the graphi-
cal user interface comprises an interactive menu for selecting
the interactive television services.

22. The computing device of claim 17, wherein the first
connection comprises one of a virtual network computing
(VNC) connection, a remote desktop protocol (RDP) connec-
tion, or an Apple remote desktop protocol (ARD) connection.

23. The hospitality media system of claim 1, wherein the
first connection is dedicated, persistent, and bi-directional.

24. The computer-implemented method of claim 8,
wherein the first connection is dedicated, persistent, and bi-
directional.

25. The computer-implemented method of claim 13,
wherein the first connection is dedicated, persistent, and bi-
directional.

26. The computing device of claim 16, wherein the first
connection is dedicated, persistent, and bi-directional.

#* #* #* #* #*

